
Resolving Uncertainties during Trace Analysis 
 

 Alexander Egyed 
Teknowledge Corporation 

4640 Admiralty Way, Suite 1010 
Marina Del Rey, CA 90292, USA 

+1 310 578 5350 ext. 201  

aegyed@acm.org 
 

  
 
 
 

ABSTRACT 
Software models provide independent perspectives onto software 
systems. Ideally, all models should use the same model element to 
describe the same part of a system. Practically, models elements 
are not shared because of syntactic and semantic differences 
among modeling notations. Trace dependencies explicitly maintain 
the commonalities among the distinct model elements. 

Generating and maintaining trace dependencies is difficult, costly, 
and highly error-prone. Automated trace analysis techniques are 
scarce. This paper extends an existing, testing-based technique for 
generating and maintaining trace dependencies. It is based on the 
commonality principle: if two model elements of different 
perspectives are the same then they must have the same source 
code. The existing approach associates test scenarios with model 
elements, tests them, and observes what lines of code are being 
executed. Model elements are considered the same/similar if their 
testing uses the same/overlapping lines of code.  

This paper extends the existing approach (and tool) by giving the 
user a richer, more powerful, yet precise language on how to relate 
model elements, test scenarios, and source code (the input). This 
allows some forms of uncertainties to exist in input data without 
sacrificing reliability. The extended approach also identifies 
“shared code.” Shared code works against the commonality 
principle in that model elements do not relate if they overlap solely 
on their use of generic source code (e.g., queue). As a pre-
requisite, our approach requires an executable and observable 
software system and test scenarios.  

Categories and Subject Descriptors 
D.2.10 [Design]: Trace Dependencies 

General Terms 
Documentation, Design. 

1. INTRODUCTION 
Separation of concerns [13] and aspect-oriented programming [11] 
are classical examples of cases where the complexity of modeling a 
system is divided up into perspectives. Within these perspectives, 

concerns are modeled and solved separately. Typically, specialized 
models are used. While development concerns may be modeled in 
separate perspectives, those concerns do affect one another. This 
raises the issue of consistency in that perspectives should not 
make contradictory assumptions. Synchronization mechanisms are 
required to ensure that all perspectives treat the system 
consistently.  

This paper discusses a trace analysis technique for identifying trace 
dependencies among those model elements that represent 
same/similar aspects of a software system but are maintained 
separately. While finding trace dependencies alone is not sufficient 
to reconcile multiple perspectives, they are the foundation for any 
such mechanism. Understanding model dependencies is vital for 
guiding consistency checking, change propagation, reverse 
engineering, code generation, and many other activities. Their 
absence inhibits automation.  

Since trace dependencies identify same/similar, albeit separately 
recorded development artifacts, knowledge about them is required 
at about any development stage: requirements engineering, design, 
implementation, testing, and maintenance.  

Challenges to Overcome 
Four key difficulties complicate trace analysis:  
1) Complexity is n2 for n model elements because every model 

element has a potential relationship to every other one. 
2) Semantic and syntactic differences among models and their 

many-to-many mappings. 
3) Unawareness on part of developer (different developers may 

solve different concerns). 
4) Development information is captured informally (if at all), 

models are highly incomplete, they are based on a wide range 
of non-standard notations (or standardized notations are taken 
out of context), and they include “corporate knowledge” 
(e.g., terminology that has meaning to few people only).  

Given all these difficulties, it is not surprising that developers have 
difficultly in creating trace dependencies and, once they are 
created, in maintaining them while the software system evolves [3]. 
This problem is known as the traceability problem [8].  

To date, models rarely have explicit mechanisms for identifying 
how their model elements overlap with other models. Thus, 
identifying model dependencies is a predominantly manual and 
error-prone activity. Existing approaches for detecting trace 
dependencies require extensive manual intervention.  

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies 
are not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
SIGSOFT’04/FSE-12, Oct. 31-Nov. 6, 2004, Newport Beach, CA, USA. 
Copyright 2004 ACM 1-58113-855-5/04/0010…$5.00. 

Proceedings of the 12th ACM SIGSOFT Symposium on Foundations of Software Engineering (FSE), Irvine, CA, 
November 2004, pp. 3-12 



Necessary Ambiguities in Guidance 
This paper discusses a technique for identifying trace 
dependencies that addresses all key difficulties discussed above. 
Our approach, originally introduced in [6], uses the executing 
software system and its testing as a baseline for finding trace 
dependencies. We demonstrated its usefulness on several case 
studies. Since the technique requires the existence of some source 
code (any testable, partial implementation is sufficient), its use is 
restricted to the latter stages of the software lifecycle: 
implementation, testing, and maintenance. This is not a severe 
restriction because these latter stages consume the bulk of software 
development cost and time [2]. These later stages also have the 
most need for trace dependencies while developers change and 
new requirements emerge. While the technique does not readily 
apply to requirements engineering and design, it is capable of 
generating trace dependencies for these artifacts later once an 
executable and testable software system is available. 

While our approach solved some of the key difficulties of trace 
analysis, it required precise input and it made assumptions that did 
not hold always. This paper extends our approach to testing-based 
trace analysis to address these two issues. It allows developers to 
express uncertainties in input but it guarantees results to be precise 
and correct. It also addresses the problem of shared code that 
blurs the boundary of model elements. Giving developers the 
ability to express uncertainties reduces a major source of errors but 
it does not necessarily eliminate errors. This paper thus also 
demonstrates how to detect errors. 

2. TRACE ANALYSIS (BACKGROUND) 
The Trace Analyzer [6] (the approach and its tool) uses testing to 
generate trace dependencies. Testing a system results in lines of 
code being executed. This is observed automatically with off-the-
shelf monitoring tools (e.g., IBM Rational Quantify). Since trace 
analysis aims at identifying same/similar model elements across 
multiple perspectives, it is expected that these same/similar model 
elements execute same/similar lines of code during testing. 
Therefore, if two tests (A and B) execute the same lines of code 
then there is a trace dependency. Otherwise, if two tests execute 
different lines of code then there cannot be a trace dependency. 

The approach requires developers to associate tests with model 
elements (e.g., test A is about some model element X and test B is 
about some model element Y). If tests A and B execute 
same/similar lines of code then their model elements X and Y must 
be same/similar also. Thus, overlaps among lines of code imply 
trace dependencies through the commonality principle: 

Commonality: if A is known to trace to some source code CA and 
B is known to trace to some source code CB then a trace 
dependency exists if CA and CB overlap 

As input, the approach requires (1) model elements with unknown 
trace dependencies; (2) test scenarios that describe independent 
system tests; and (3) hypotheses on the how model elements relate 
to the test scenarios. By monitoring the lines of code executed by 
test cases, overlaps are identified. These overlaps imply trace 
dependencies among the test scenarios and subsequently among 
the model elements that are hypothesized to relate to those 
scenarios. Our approach is an improvement in that: 

1) Only n input hypotheses are required to infer n2 trace 
dependencies: a model element has trace dependencies with 

potentially every other model element (n2) but a model element 
has one trace dependency to the system (n). 

2) Semantic and syntactic differences among models are irrelevant: 
it is not required to understand the differences between any two 
models to determine trace dependencies (n2 differences). 
Instead, it is only required to understand the difference in 
meaning between a model element, its test case, and the system 
(n differences). 

3) Collaboration among developers is reduced: developers only 
need to investigate their own model elements and how they relate 
to the source code. There is no need to understanding any other 
developer’s model. 

4) The use of informal, partial, non-standardized notations is not a 
problem because these differences do not have to be 
understood in context of other models 2) or other developers 3).  

The key benefit of our approach is the separation of concerns 
during trace analysis. Instead of having to understand the 
relationships among multiple perspectives, our approach only 
requires to understand the individual relationship between any 
perspective and the system. This relationship can be investigated 
fully independent of every other perspective. 

The downside of our approach is that it detects trace dependencies 
among model elements only if they can be mapped to some source 
code. We refer to a model element’s source code as its footprint. 
If a model element does not have a footprint then it cannot be 
tested. Therefore, this paper is only applicable to product models 
that describe software systems. This includes requirements 
models, design models (UML [15]), and architecture models but 
excludes process models or decision models . In the following, we 
will refer to product models simply as models. 

Trace analysis is trivial if we know the precise footprint for every 
model element. Finding trace dependencies is then solely about 
applying the commonality principle. The most significant challenge 
of trace analysis is to determine the exact footprint for every model 
element. This requires transitive reasoning: 

( ) ( ) ( )111111 fmfssm →⇒→∧→  
In [6], we assumed that a model element m has some footprint f if 
the model element has test scenarios s and these test scenarios 
have a combined footprint f. Unfortunately, there is no guarantee 
that developers correctly associate test scenarios with model 
elements ( 11 sm → ) (note that 11 fs → is assumed to be 
correct because it can be observed automatically during testing). 
This may lead to two problems.  

First, if test scenarios are not exhaustive in evaluating the scope of 
a model element then not all lines of code are being executed. This 
leads to a subset of the true footprint: 

( ) ( ) ( ) ( )xx ffwherefmfssm ⊆→⇒→∧→ 111111  
Second, if developers are not aware of all model elements used by 
a test scenario then the given model elements appear to have a 
larger footprint than the true one: 

( ) ( ) ( ) ( )xx mmwherefmfssm ⊆→⇒→∧→ 111111  
This is a dilemma because every input has unknown uncertainties 
with contradictory effects. Our original trace analyzer was not able 
to handle these two problems. Furthermore, our approach was not 
able to identify shared code that is executed by multiple model 
elements but does not belong to any of them (i.e., shared code 
contains domain-independent knowledge). 



3. PROBLEM STATEMENT 
Using a system as a base line reduces trace analysis to two steps: 
(1) identifying the footprint of every model element and (2) 
identifying trace dependencies through overlaps among footprints.  

Handling Uncertainties 
If a model element m is exactly some footprint f then we know that 
m traces to the footprint and none other; and that the footprint 
belongs to m and none other. This is precise and complete input. 
Unfortunately, developers often have an incomplete and a 
potentially inconsistent understanding of how model elements relate 
to source code. We refer to this as uncertainty.  

We speak of a partiality uncertainty if it is not known fully what 
something is. For example, a developer may be uncertain whether 
sufficient tests were performed to establish the footprint for a 
model element. Such an uncertainty is expressed by defining the 
model element to be at least the given footprint. If developers are 
uncertain whether the given model elements capture a test scenario 
completely then this uncertainty is addressed by stating that the 
model element is at most the given footprint. At times, developers 
may find it useful to say what a model element is not.  

We speak of a cluster uncertainty if the role of individual elements 
within a group of elements is unknown. For example, developers 
may be uncertain about the role of individual lines of code but they 
may understand well the purpose of a collection of lines of code 
(e.g., methods, classes, packages). This applies to model elements 
also. Such uncertainties are expressed by clustering individual 
model elements. For instance, it may be easier to state that model 
elements ‘a’ and ‘b’ together relate to footprint ‘1’ and ‘2’ while it 
remains uncertain whether model element ‘a’ relates to ‘1,’ ‘2,’ or 
both. 

Uncertainties give designers a wide repertoire for defining input 
relationships in a detail they feel comfortable with. Uncertainties are 
vital to developers who do not know everything. In our experience, 
not knowing everything is the norm and not the exception. 
Unfortunately, uncertainties obscure our knowledge on the precise 
and complete footprint of model elements. This paper will discuss 
how to identify the footprint for model elements in spite of 
uncertainties. 

Handling Shared Code 
We define shared code as application-independent source code 
that is used by more than one model element. Typically, shared 
code is general-purpose code (stack, queue), libraries (math, file 
IO, user interface), or other application-independent functionality. 
While shared code is used by multiple model elements, it should 
not be considered part of any model element. Unfortunately, 
shared code is problematic for testing-based trace analysis because 
it is being executed during the testing of any model element that 
uses the shared code. This confuses our approach into believing 
that shared code is overlapping footprint among model elements 
and it will generate trace dependencies.  

Any two model elements should not be considered same/similar 
simply because they use the same shared code. Thus, if any two 
model elements overlap solely in their use of shared code then this 
should not lead to a trace dependency. The commonality principle 
does not apply to shared code. This paper will also discuss how to 
identify and isolate shared code. 

4. TRACE ANALYSIS REVISITED 
The following will introduce an extended technique for trace 
analysis to handle uncertainties and shared code.  

4.1 Goal 
Trace analysis has two goals. The first goal is to identify for every 
line of code the model element(s) it belongs to. If a line of code 
belongs to a model element then we say that the model element is 
included. If a line of code does not belong to model element then 
we say that it is excluded. If it is unknown whether a line of code 
belongs to a model element then the model element is neither 
included nor excluded. The second goal of trace analysis is to 
identify all lines of code that are shared. Shared code must be 
ignored during trace analysis since it is excluded from the 
commonality principle. 

Trace analysis is complete if every line of code either includes or 
excludes every model element; or if the line of code is shared. We 
refer to the complete set of model elements as M and to the 
complete set of lines of code as F (for footprint of model 
elements). The goal of trace analysis is summarized as:  

( ) ( ))()()( feisSharedMfeexcludedfeincluded
Ffe

∨=∪∀
∈

 

If the trace analysis is not complete then the generated trace 
dependencies have uncertainties. Additional input (guidance) is 
required to complete the trace analysis. Even if the trace analysis is 
incomplete, it will generate useful results as will be shown. 

4.2 Input (Guidance) 
To support the cluster uncertainty in input, developers may group 
model elements and lines of code. Input on how model elements 
relate to lines of code thus may be given on the basis of individual 
elements or sets. The input fm →  clearly defines m to trace 
to f. We refer to f being the footprint of m where f may be any 
subset of F. If m is a set of model elements (e.g., m1 and m2) and 
if f is a set of lines of code (e.g., f1 and f2) then all model elements 
in m together trace to f. In other words, every subset of m traces to 
a subset of f so that the union of all subsets is exactly f. 







 ⊆∀∧






 ⊆∧→∀⇒→

∈⊆
mfeincludedfffmfm

ffemm
)('''

'
 

To support the partiality uncertainty, developers may qualify the 
input between model elements and lines of code as “is”, 
“isAtMost”, “isAtLeast”, “isNot”, “isExactly”. Their exact 
implications are discussed later. We require input (guidance) to be 
correct to guarantee correct results but safeguards exist that may 
detect incorrect guidance. 

If a source code (footprint) of an input overlaps with the source 
code of another input then the source code is fragmented into 
several parts. The overlapping source code is one fragment and the 
source codes for each of the non-overlapping parts are the other 
fragments. We will denote “code elements” to be the fragments of 
source code caused by the overlaps among all inputs. Input is then 
expressed in terms of code elements, which has the advantage that 
every input refers fully or not at all to all lines of code within a 
code element. In other words, all lines of code within code 
elements relate to model elements in the exact same way and need 
not be considered separately during trace analysis. This is a useful 
optimization to minimize the number of objects required to 
represent the system.  



4.3 Examples  
This section shows examples of various inputs to discuss the 
basics of trace analysis. 

4.3.1 Simple Illustration 
Consider the two illustrations in Figure 1. Figure 1 (a), first row, 
depicts the input that model elements a and b together relate 
exactly to code elements 1 and 2 (note: code elements 1 and 2 
refer to distinct sets of lines of code). In other words, the model 
elements {a,b} have the footprint {1,2} exactly and none other.   

  1 2 3 
a 
b in out 

}12{}{  →isExactlyab  
c    
a    
b }23{}{  →isExactlybc  
c 

out in 

 

 1 2 3 
a in 
b in 

out 

c 
out 

in 
 
 
   1 2 3 

a  
b 

in 
 }12{}{  →isAtLeastab  

c    
a    
b in out }23{}{  →isNotb  
c    

 

 1 2 3 
a in  
b in out 
c    

 

(a)

(b)

 
Figure 1. Combining Input Data (two illustrations) 

Our approach annotates code elements with the properties of 
included/excluded lists to capture the input. Figure 1 illustrates 
these graphically using colored regions to highlight included (in) 
and excluded (out) model elements (rows) for code elements 
(columns). The input {a,b} is exactly {1,2} results in a and b 
being included in both 1 and 2 (medium gray/green region labeled 
“in”) and excluded in 3 (dark gray/red region labeled “out”).  

Figure 1 (a) also depicts the second input that model elements 
{b,c} relate exactly to {2,3}. This leads to a different set of 
included and excluded model elements among the same code 
elements. Both inputs overlap in their use of the code element 2.  

The right part of Figure 1 (a) shows the combined input. There b is 
excluded from 3 and from 1 because the first input excluded it 
from 3 and the second input excluded it from 1. The combined 
input also shows b to be included in 2 which is a logical 
consequence of its exclusion everywhere else. This reasoning is 
based on the assumption that every model element must own some 
unique aspect of the system. In other words, every model element 
must have some footprint (recall Section 2).  







 =∃∀=

∈∈
mefeincludedmElementsvalidModel

ffemme
)()(  

Since model element b must relate to a subset of {1,2} (first input) 
but it is not allowed to relate to 1, it follows that b must relate to 
{1,2}-{1}={2}. Of course, a model element may never be included 
and excluded within the same code element. 

{})()( =∩∀
∈

feexcludedfeincluded
Ffe

 

Figure 1 (b) shows another illustration. The first input defines 
model elements {a,b} to relate to at least 1 and 2. This implies that 
model elements a and b are not excluded anywhere because “at 
least” implies that {a,b} may relate to a footprint larger than {1,2} 
(e.g., 3). The second input defines b not to be 2 and 3. The 

combined input again resolves some uncertainty using similar 
reasoning as above.  

Thus, trace analysis is a straightforward form of analytical 
reasoning. That is, ignoring shared code and perspectives. 

4.3.2 Illustration with Perspectives 
Trace analysis identifies similarities among model elements that are 
captured separately in perspectives (recall Section 0). An example 
of a perspective is a class diagram (e.g. UML). Every class in a 
class diagram has a unique purpose since it describes a unique 
aspect of the system. It follows that every class must have some 
unique code not shared with any other class. Another example of a 
perspective is a state chart diagram where every state transition 
describes a unique behavioral aspect of the system. 

If some form of behavioral description (e.g., statechart diagram) 
complements the structural description (e.g., class diagram) then 
there are two perspectives of the same system. Both perspectives 
use syntactically and semantically different model elements. 
However, both perspectives describe the same system. It follows 
that the structure has to accommodate the behavior and vice versa. 
Trace analysis reveals what part of the structure has to 
accommodate what part of the behavior. 

Knowledge about perspectives is an optional, useful input to trace 
analysis. If a developer defines a set of model elements to form a 
perspective then every model element of the perspective represents 
something unique about the system: 







 ¬∧=∃∀⇒

∈∈
)()()( feisSharedmefeincludedmunique

ffemme
 

This implies that every model element within a perspective has 
some unique code elements not shared with any other model 
element. Therefore, the model elements of a perspective 
complement one another. Developers either identify perspectives 
manually or implicitly through the types of model elements used 
(i.e., classes in a class diagram always form a perspective).  

(a)

(b)

  1 2 3 
a 
b 

in out 
}12{}{  →isExactlyab  

c shared in* 
a in* shared 
b }23{}{  →isExactlybc  
c out in 

 

 1 2 3 
a in shared 

b in 
out 

c out 
shared in 

 

 1 2 3 
a in  
b in out 
c shared in* 

 

  1 2 3 
a  
b 

in 
 }12{}{  →isAtLeastab  

c shared in* 
a    
b in* out }23{}{  →isNotb  
c    

  
Figure 2. Combining Input Data with Perspectives 

Figure 2 revisits the illustrations from Figure 1 with the difference 
that model elements a, b, and c are part of the same perspective. 
Again, Figure 1 (a), first row, shows that {a,b} is included in 
{1,2} and excluded in {3} because model elements {a,b} trace 
exactly to footprints {1,2}.  



Since every model element in a perspective needs to contribute 
some unique aspect to the system, the input implies that 1 and 2 
must be the unique part for a and b. Thus, model element c (the 
remaining model element of the same perspective as a and b) 
needs to find its unique code somewhere else. Only code element 
3 remains and it follows that model element c must relate to a 
subset of 3. Why a subset? A perspective describes a particular 
point of view onto a system. Its point of view may not cover the 
entire system but a subset only. Through the first input, we know 
that the footprint of the perspective is at least {1,2}. Given that we 
do not know whether the scope of the perspective is about the 
entire system, we must assume that the perspective is at most 
{1,2,3}. This uncertainty is captured in Figure 2 in form of a star 
symbol (“*”) next to the label “in.” 

The input in Figure 1 (a), first row, also defines footprints of any 
model element other than a and b to be shared. This is another 
logical consequence of the uniqueness of model elements in 
perspectives. If the input defines model elements a and b to be 
footprint 1 and 2 exactly then a subset of that footprint must be 
unique to a, another subset must be unique to b, and the remaining 
subset, if any, must be shared code (note: these three subsets may 
not overlap => unique). While we cannot infer what these subsets 
are, we can assume that no other model element of the same 
perspective may find its unique code in {1,2}. Thus, if other input 
should state that another model element of the same perspective is 
included in any subset of {1,2} then this subset must be shared 
code (light gray/yellow region labeled “shared”). 

We thus use a third list, called shared, (in addition to included and 
excluded) to remember potential shared code. For example, with 
the input {a,b} is exactly {1,2}, we add the model element c to the 
shared list of both 1 and 2. If, later, model element c is added to 
the list of included elements of either 1 or 2 then we know that this 
footprint is shared code: 

ε≠∩= )()()( fesharedfeincludedfeisShared  

4.4 Footprint Graph 
Any two inputs may overlap partially or fully in the footprints they 
cover and the model elements they use (they may overlap 
completely, partially, or not). Depending on the types of overlaps 
and the many combinations, there are over 400 scenarios for 
understanding the relationships between any two inputs. The 
previous section presented two illustrations only. It is thus 
impractical to present rules on how inputs affect one another. 
Instead, this section will introduce a generic structure, called the 
footprint graph (originally introduced in [6]), to discuss how input 
is translated and interpreted. We will discuss: 

1) structure for capturing input (guidance) 
2) translating input into structure 
3) refining structure 

4.4.1 Structure for Capturing Input 
The footprint graph is organized around code elements because 
generating trace dependencies requires the understanding of 
overlaps among the code elements. The purpose of the footprint 
graph is to represent input in a uniform manner regardless of the 
input type so that their effects can be combined easily.  

Nodes in the graph represent individual code elements or sets of 
code elements. Every node has the three lists included, excluded, 

and shared (see Figure 3). The model elements in the included list 
represent the part of the system covered by the node’s footprint. 
The model elements in the excluded list do not represent any part 
of the node’s footprint. The shared list contains a list of model 
elements that should not be included in the same node unless the 
node represents shared code. Initially, these lists are empty.  

Figure 3 revisits the two illustrations introduced in Figure 2. It 
shows the nodes that are created for each illustration and the values 
they are populated with. We still assume that {a,b,c} belong to the 
same perspective. We learned from Figure 2 (a) and its discussion 
that the input “ab is exactly 12” is equivalent to {1,2} including 
{a,b} and sharing c; and 3 excluding {a,b} and including c. Thus, 
we require two nodes. Node 12 included=ab and shared=c; node 
3 excluded=ab and included=c (Figure 3 (a) depicts this and other 
information).  

{12}
included: {ab}
shared: {c}
excluded: {}

{1}
included: {a}
shared: {c}
excluded: {bc}

{2}
included: {}
shared: {ac}
excluded: {}

{3}
included: {c}
shared: {a}
excluded: {ab}

{23}
included: {bc}
shared: {a}
excluded: {}

{12}
included: {ab}
shared: {c}
excluded: {}

{1}
included: {b}
shared: {c}
excluded: {}

{2}
included: {}
shared: {c}
excluded: {b}

{3}
included: {c}
shared: {}
excluded: {b}

}12{}{  →isExactlyab }23{}{  →isExactlybc

}12{}{  →isAtLeastab

}23{}{  →isNotb

(a)

(b)

 
Figure 3. Footprint Graph for Two Sample Inputs 

The footprint graph has edges to present overlaps among the code 
elements of nodes. An edge defines a parent-child relationship 
between two nodes where the child has a subset of the code 
elements of the parent. Nodes, connected through edges, form a 
hierarchy where the leaf nodes (bottom nodes) represent small 
pieces of code and the root nodes (top nodes) represent large 
parts of code or the entire system. This hierarchy is necessary 
because individual nodes fragment global knowledge, which leads 
to information loss. For example, node 12 including {a,b} is not 
equivalent to node 1 including a or b or both and node 2 including 
a or b or both. The latter two statements allow the possibility that 
both nodes are either a or b while the first statement requires one 
to be a and the other to be b.  

Figure 3 (a) depicts “ab is exactly 12” and “bc is exactly 23” 
together. The first input requires nodes 12 and 3 while the second 
input requires nodes 23 and 1. Edges exist because nodes 1 and 3 
are subsets of nodes 12 and 23 respectively. Overlaps among 
nodes in the footprint graph are captured explicitly. Nodes 12 and 
23 overlap in the code element 2 which results in the node 2 (recall 
the fragmentation discussed in Section 4.2).  



However, Figure 3 only depicts the result of constructing the 
footprint graph. We will discuss later how overlaps and, 
consequently, their additional parent-child edges are used during 
trace analysis (e.g., to propagate “b” to node {2}). 

The footprint graph has a series of properties. If a node includes a 
model element then every parent node must include the model 
element also. After all, the parent node refers to a superset of the 
code elements of its children. The parent thus “inherits” the union 
of included elements of all its children:  

U
))((

)())(()(
fenodechildrenchild

childincludedfenodeincludedfeincluded
∈

+=  

In reverse, the excluded elements of a child “inherits” the excluded 
ones from its parents. If some footprint excludes a model element 
then all subsets of that footprint must exclude it. Furthermore, the 
parent may “inherit” excluded model elements from its children if 
every child excludes those model elements and the footprint of the 
children together is equal the footprint of the parent. The same 
applies to shared elements. Neither case is computationally 
appealing but a useful observation simplifies matters.  

For trace analysis, we are interested in knowing included, 
excluded, and shared elements for individual code elements only. 
Through the above observation, we know that every input that 
excludes/shares model elements for some footprint can be re-
interpreted as the same elements excluding/sharing every code 
element individually. In the beginning, we thus add a node for every 
code element to the footprint graph. Since no node will ever have a 
footprint equal or less of these, we refer to these nodes as 
footprint leaves. Excluded/shared elements are added to every 
footprint leaf they overlap with. The excluded/shared elements of 
parents are then easily computed as: 

)()(

)()(

)(

)(

leavesharedfshared

leaveexcludedfexcluded

fleavesleave

fleavesleave

I

I

∈

∈

=

=  

For example, in Figure 3 (a), node 3 contains model element a in 
its shared list. This is because the statement “23 sharing a” is re-
interpreted as “2 sharing a” and “3 sharing a”. Node 2 combines 
the shared elements from both its parents and, consequently, both 
a and c are part of the shared list of node 2.  

The footprint graph is minimal in that every node contains 
information that is not derivable automatically through its parents 
or children. For example, Figure 3 (b) depicts the footprint graph 
for the second illustration from Figure 2 (details of generating it are 
omitted given the similarity with the first illustration). What is 
missing from Figure 3 (b) is a node 23 that excludes b. It was 
discarded because its children, nodes 2 and 3 contain all 
knowledge of this parent.  

4.4.2 Translating Input into Structure 
To represent the input, we add nodes and edges. Depending on the 
type of input, one or two nodes are created, or they are updated if 
the nodes already exist.  

The input fm is→ defines m to trace to f. Footprint f thus 
includes the model elements in m. This input contains uncertainties 
in that it does not define whether m traces to any footprint other 
than f (a subset of the remaining footprint F-f) or whether other 
model elements (a subset of the remaining model elements other 
than m) may trace to the same footprint. This uncertainty is 

captured in the table in Figure 4 (a) as m being included in f (in the 
row m and column f) next to a dashed cross. The cross implies 
that not all of f may belong to m.  

The input fm isAtLeast →  defines the minimal footprint of a set of 
model elements. The uncertainty in the statement “atLeast” implies 
that the true footprint of m is potentially larger than f (indicated 
through the box’s dashed extension in Figure 4 (b)).  

The situation is different if there are multiple model elements in the 
same perspective. We refer to these other model elements of the 
same perspective as P-m. We previously discussed that all model 
elements part of the same perspectives must have some unique 
code. Given that all of f belongs to m, it follows that all remaining 
model elements of the same perspective must relate to some code 
other than f. The footprint F-f thus includes the model elements P-
m. And, it is possible to detect shared code if any subset of f 
includes any subset of P-m (recall Section 4.3.2).  

The input fm isAtMost → defines the maximal footprint of a set of 
model elements. The given model element must not have any 
footprint other than f. In other words, model elements m are 
excluded from footprint F-f and included in footprint f (see Figure 
4 (c)). Also, “isAtMost” implies the uncertainty that m could have 
a footprint less than f. This uncertainty is expressed in the now 
familiar fashion of a dashed X. The “isAtMost” rule does not 
restrict in any way the model elements P-m. Clearly, it is possible 
that P-m is included in f but we have no evidence to support this. 
Likewise, it is possible that P-m is included in F-f but we have no 
evidence to support that either.  

The input “isNot” is functionally the negation of “isAtMost”. 
Given that every model element requires some footprint, it follows 
that if model elements in m are excluded from f then they must be 
included in F-f to have some footprint. As in the case of 
“isAtMost”, the inclusion statement is accompanied by a dashed X 
implying that model elements other than m might also be included 
in F-f.  

To summarize, this section demonstrated how to separate precise 
input from uncertain input. We found the presented five inputs the 
most useful ones in handling partiality and cluster uncertainty. 
Other inputs are possible but not discussed. The table below 
summarizes the effects of input with uncertainties onto nodes (i.e., 
it restates Figure 4 in terms of node properties). For example, the 

m

P-m

f F-f

m

P-m

f F-f

m

P-m

f F-f

m

P-m

f F-f

m

P-m

f F-f

fm is→ fm isAtLeast → fm isAtMost →

fm isExactly →fm isNot →

in in

in

inshared

in

inshared

in

(a) (b) (c)

(d) (e)  
Figure 4. Basic Input Rules. More complex rules can be 

composed of these basic rules. 



input rule fm isAtLeast → requires the two nodes f and F-f. Model 
elements in m are added to the included list of node f; model 
elements in P-m are added to the same node’s shared list; and 
model elements in P-m are added to the excluded list of node F-f. 
The latter two additions have no effect if the model elements are 
not part of a perspective because P-m is empty (i.e., adding an 
empty set to an existing one does not change it). 

Input Nodes 
fm is→  included(f) += m 

fm isAtLeast →  
included(f) += m, shared(f) += P-m 
included(F-f) += P-m 

fm isAtMost →  included(f) += m, excluded(F-f) += m 

fm isNot →  included(F-f) += m, excluded(f) += m 

fm isExactly →  
included(f) += m, excluded(F-f) += m 
shared(f) += P-m, excluded(F-f) += P-m 

If a node does not exist then it is created with included, excluded, 
and shared already being empty. If a node with the same footprint 
exists then the node is updated by adding the new information. No 
information is ever deleted from a node. Edges are added between 
newly created nodes and their parents or children. We speak of a 
footprint graph because every child may have zero to many parents 
and every parent may have zero to many children.  

4.4.3 Refining Structure 
Once constructed, the footprint graph reflects the input and the 
“inherited” parent/child properties. The following discusses how to 
refine the structure by pushing included elements to children 
nodes. Refinement computes, with increasing detail, how individual 
code elements relate to model elements. Refinement furthers the 
goal of trace analysis expressed in Section 4.1. 

{ }
{ }

( ) mmssharedNodemdesexcludedNofincluded

csharedmfchildrencmssharedNode
cexcludedmnodescmdesexcludedNo

fsharedm
fincludedm

=−−

≠∩∈=
∈∈=

∀
∉
∈

)()(

{})(|)()(
)(|)(

)(
)(

 

We know that every model element must have some footprint. If a 
node includes model element m and that node has some children 
that exclude or share model element m then the remaining footprint 
must include m. Figure 5 shows two applications of the refinement 
rule on the first illustration introduced in Figure 2.  

The first application of the rule is in b getting refined from node 12 
to node 2. The reasoning is as follows: We know that b is included 
in 12 and that it is excluded from 1. Since b must have a footprint, 
it must be in the remaining footprint 2.  

Similar reasoning refines a from node 12. We know that a is 
included in 12 but shared in 2. Thus, if a were included in 2, this 
node would become shared code. Since a must have a unique, 
unshared footprint, it must be included in the remaining footprint 1. 
Given that node 1 already included a, it does not add new 
knowledge in this case. 

Both refinement scenarios move included model elements from 
parent nodes to children nodes. In case of nodes 1 and 3, the 
nodes are complete now because they include and exclude all 
model elements of the same perspective; and they share nothing. 
Node 2 is still incomplete. 

))()(()( feincludedfeexcludedPfeisComplete ∪−⇒  

The star symbol (“*”) annotates an incomplete list and it is a visual 
aid for the developer to identify incompleteness. The symbol 
indicates that other model elements of the same perspective may be 
added to the list. For example, node 2 is incomplete because it is 
possible that future input add model elements a or c to node 2 or a 
subset thereof. 

{12}
included: {ab}
shared: {c}
excluded: {}

{1}
included: {a}
shared: {c}
excluded: {bc}

{2}
included: {b*}
shared: {ac}
excluded: {}

{3}
included: {c}
shared: {a}
excluded: {ab}

{23}
included: {bc}
shared: {a}
excluded: {}

}12{}{  →isExactlyab }23{}{  →isExactlybc

(a)

 
Figure 5. Refined Footprint Graph 

In both refinement scenarios, a new node would have to be created 
if no such node would have existed already. Refinement starts at 
the root of the graph and works towards the leaves. If a model 
element is added to a node then the parents and children instantly 
“inherit” the newly added information. There is no race condition 
in what order model elements are refined (proof is excluded for 
brevity).  

4.5 Generating Trace Dependenciess 
Trace dependencies are derived from the nodes of the footprint 
graph. If two model elements overlap in the same node then there 
is a trace dependency between them. Given that a system may be 
fragmented into many small nodes, it is likely that the same model 
element is included in more than one node. In this case, the 
footprint of the model element is the union of all those nodes.  

Since model elements of different perspectives are semantically 
and syntactically different, not many model elements will have the 
exact same footprint. In this case, the “similarity” between any two 
model elements is expressed in terms of how much source code 
(i.e., nodes) they have in common. The more common source 
code, the more similar they are.  

The output of the trace analysis may contain uncertainties if some 
nodes remain incomplete. Developers may use knowledge of 
incompleteness to guide what additional input is required to make 
the trace analysis more complete. However, output with 
uncertainties is still useful. First, a developer may find it useful to 
have partially complete trace dependencies instead of having none. 
Second, the problem of incompleteness is reduced through 
grouping. Take, for example, the bottom of Figure 3 (b) before 
refinement. Node 1 includes model element b and node 2 is not 
(yet) known to trace to anything. If some other, third model 
element overlaps with nodes 1 and 2 then the result seems 
uncertain. After all, we do not know what is included in node 2. 
Still, we know that {1,2} together include a and b because there is 
a parent node that says so. Thus, despite the uncertainty in both 
leaf nodes, it is possible to generate a trace dependency without 
uncertainty in this case. The details of how to generate trace 
dependencies is not discussed in more detail here (see [6]).. 



5. CASE STUDY AND TOOL SUPPORT 
The following demonstrates the trace analysis on a video-on-
demand system (VOD) [5]. The VOD plays selected movies on 
demand. The VOD was modeled in UML and Figure 6 depicts two 
UML diagrams (perspectives). The statechart diagram (top) 
describes the behavior of VOD. A user can select individual 
movies for playing. During playing, a selected movie may be 
paused, stopped, and played again. The transitions between these 
states correspond to buttons a user may press in the VOD’s user 
interface. The class diagram (bottom) shows the coarse structural 
decomposition of VOD. In the following, the model elements are 
referred to by their short identifiers. Note that the presented model 
is a subset of the actual UML model for brevity.  

The goal of the trace analysis is to understand how the statechart 
elements relate to the classes. There are 256 theoretical trace 
dependencies among the ten state transitions and six classes 
(6+10)2. Every state transition describes a distinct behavior and 
every class describes a different part of VOD. Thus, they represent 
two separate perspectives of the VOD system. The goal of trace 
analysis is to identify the commonality between them. For example, 
what state transition requires the Streamer? Or what classes 
implement the “Play” transition? While it might be easy to guess 
some of those trace dependencies, the semi-formal nature of the 
UML diagrams makes it hard to identify complete and correct trace 
dependencies manually.  

Main Window

playing
video

pausing
video

stopped
video

playing
video

streaming video

pausing
video

stopped
video

Pause

Stop

Play

Stop

Play

Play

Quit

Select

[s1]

[s2]

[s3]

[s8]

[s9]

[s10][s11]

[s11]

[s12][s12]

StreamerMovie Display

Main Window Server Selection

Movie Selection

Server Access

select
movie

[c4] [c2]

[c3]

[c1]

[c6]

[c5]

 
Figure 6. Video-On-Demand Case Study 

The following shows how our trace analysis derives trace 
dependencies. The developer is required to define how model 
elements in individual perspectives relate to the 21 java classes 
(labeled A through U) and the 200+ methods. For brevity, we will 
assume that if any line of code of a java class relates to a model 
element then the whole java class relates to that model element. 
This is not correct for precise trace analysis but useful for 
demonstrative purposes since it limits our trace analysis to 21 code 
elements instead of thousands of them (see also Section 4.2).  

Perspective: “class” cl {c1,c2,c3,c4,c5,c6} 
#user interfaces 
     Dependency: {c5,c6} isAtLeast {C,J,S} 
#playing a movie 

     Dependency: {c2,c3,c4} isExactly {A,C,D,F,G,I,K,O} 
#finding and selecting a movie 
     Dependency: {c1,c3,c5} isAtMost {C,J,N,R,U} 

The example input above defines the perspective for classes and it 
defines three input dependencies between classes and source code. 
For example, the first input dependency states that model elements 
c5 and c6 together are at least the java classes C, J, and S. Section 
4.4.2 describes how to translate this input into the footprint graph. 
It requires the node {C,J,S} to include {c5,c6} and to share the 
remaining classes of the same perspective {c1,c2,c3,c4}. It also 
requires the remaining footprint {A,B,D-I,K-R,T,U} to include the 
remaining classes. 

Figure 7 depicts the footprint graph for the entire input as it was 
generated by our Trace/Analyzer tool. The boxes and lines 
correspond to nodes and parent/child relationships. The top field 
in the box defines the footprint. The legend on the upper, right 
corner resolves how the footprint relates to java classes. The other 
three fields in the nodes define their included (in), excluded (ex), 
and shared (sh) model elements. The input example discussed 
above is reflected in the two nodes {1,3,4} and {2,5,6}. 

In total, 11 nodes were created for the given three input rules (e.g., 
{1,3,4}). These nodes account for the input and overlaps among 
input nodes. Refinement then created the remaining three nodes 
(e.g., {1,2}, {1,4}) and modified the existing ones. The depicted 
footprint graph is not minimized to make the example easier to 
understand. The gray nodes can be eliminated safely because their 
children contain all information. Thus, the actual, minimized 
footprint graph is only eight nodes in size. 

The three given input rules contain uncertainties in how model 
elements relate to java classes. Despite those uncertainties, 
refinement uncovers what individual model elements, or smaller 
groupings thereof, relate to individual footprint nodes (the goal of 
trace analysis is to find how model elements relate to lines of 
code). For example, through node {1} we learn that model element 
{c5} is related to java class J because node {1,4} includes {c5,c6} 
and one of its children, node {4} excludes {c5}. How do we know 
that {c5} is excluded in node {4}? The input that model elements 
{c1,c3,c5} isAtMost C, J, N, R, and U implies that {c5} must be 
within this footprint and that it is excluded from every other code 
elements (including java class S that is represented by node {4}).  

The footprint graph also contains an inconsistency because node 
{2,5,6} includes and excludes model element {c3}. This is caused 
by a rather complex interplay among all three input dependencies. 
The input {c2,c3,c4} isExactly {A,C,D,F,G,I,K,O} defines model 
element {c3} to be within the given footprint while the input 
{c1,c3,c5} isAtMost {C,J,N,R,U} defines it to be within the other 
footprint. Upon closer inspection, this is not a conflict because 
java class C is within both footprints and thus would provide a 
unique footprint for {c3}. However, the input {c5,c6} isAtLeast 
{C,J,S} defines java class C to be about either c5 or c6. 
Consequently, there is a conflict in that the first two input 
dependencies require its exclusion from a given footprint while the 
last input dependency requires its inclusion in the same footprint. 
Obviously, this inconsistency is very hard to detect manually but 
our tool identifies it automatically. The source of the conflict is the 
dual role of the Server Access class {c3}. It provides services for 
streaming movies and for movie searching. However, the 
implementation separates this functionality into the two distinct java 



classes A and R. Therefore, the developer was overconfident in 
using the isExactly and isAtMost declaration. The appropriate 
input would have been isAtLeast in both cases. 

The footprint graph also contains examples of shared code. 
Footprint {3} represents the java class C which is used by all three 
input dependencies. Given that the first input {c5,c6} isAtLeast 
{C,J,S} and the second input {c2,c3,c4} isExactly 
{A,C,D,F,G,I,K,O} claim C to belong to distinct sets of model 
elements, it appears as if java class C is a general purpose support 
class that provides generic services. This is indeed true because 
the class provides a basic GUI canvas used by all displays. 

This example demonstrates how uncertainties in input are resolved 
during trace analysis. However, this is only the first part of trace 
analysis. The second part is to identify trace dependencies among 
model elements of different perspectives. In order to identify trace 
dependencies between the classes and the state transitions, we also 
need to understand how the state transitions relate to the source 
code (java classes). For brevity, we introduce a single input for 
state transitions only. 
#play, pause, stop movie 
Dependency: {s09,s10,s11,s12} is {A,C,D,F,G,I,K,N,O,R,T,U} 
This input rule defines that the play, pause, and stop state 
transitions use the indicated java classes during execution. If we 
compare this knowledge with the footprint graph then we find that 
it overlaps with nodes {2}, {3}, {5}, and {6}. Since these four 
nodes include model elements {c1,c2,c3,c4} we conclude that  
state transitions {s09,s10,s11,s12} have a trace dependency to 
{c1,c2,c3,c4} (note: to guarantee correctness we actually would 
have to resolve the inconsistency first). 

6. VALIDATION 
The trace analyzer technique and its tool support were evaluated on 
several case studies to date (e.g., [1,5]). This validation included a 
wide range of development artifacts (e.g., requirements [7], 
functional design languages such as data flow diagrams, object 
oriented design languages such as class diagrams, behaviors 
descriptions such as statechart diagrams), and different kinds of 
source code (e.g., C++, Java, Visual Basic).  

We observed that the size of the footprint graph does not increase 
linearly with the number of input dependencies. While every input 
adds at most two new nodes (linear), additional nodes are created 
to capture their overlaps with existing nodes in the graph. 
Theoretically, the footprint graph may include a node for every 
combination of code elements (n2). Practically, the sizes of the 
footprint graphs were much smaller. We contribute this to two 
optimizations: (1) we combine individual lines of code into larger 
code elements and (2) we add nodes only if they contain more 
information than their children do. The latter optimization, in 
particular, guarantees that the footprint graph is minimal. In fact, no 
parent nodes exist if the leaf nodes are complete (see isComplete). 
We have not yet performed exhaustive evaluations to measure the 
growth of the graph but the n2 worst-case growth is reasonable 
given the previously discussed n2 complexity of identifying trace 
dependencies. 

We also evaluated the correctness of the trace analysis. We 
determined two causes of errors: (1) incorrect input (was 
discussed previously) and (2) overly granular code elements. The 
latter may not be obvious. Combining lines of code into code 
elements increases the likelihood that source code is combined that 
serves different purposes. During trace analysis, it then appears as 
if those different purposes are related. Our technique detects 
inconsistencies but their absence does not guarantee correctness. 
However, the more complete the trace analysis, the less likely the 
inconsistencies. 

Shared code is problematic during trace analysis because it does 
not belong to any individual model element. This obstructs the 
finding of commonalities, which is obviously based on overlapping 
footprints. We demonstrated that we can detect the existence of 
shared code but this capability is limited. 

7. RELATED WORK 
Pinheiro and Goguen [14] devised an elaborate network of trace 
dependencies and transitive rules among them to support 
requirements traceability. Their approach, called TOOR, addresses 
traceability by reasoning about technical and social factors. Their 
approach is limited to requirements and ignores the problem of 

 
Figure 7. Trace/Analyzer Tool shows Refined (but not minimized) Footprint Graph for Video-On-Demand Case Study  



traceability among development artifacts in general. Their work 
also ignores the problem of how to generate and validate trace 
dependencies among development artifacts that are not defined 
formally and completely. 

Concept analysis (i.e., as used for the reengineering of class 
hierarchies [16]), provides a structured way of grouping binary 
dependencies. These groupings can then be formed into a concept 
lattice that is similar in nature to our footprint graph. It is unclear, 
however, whether concept analysis can be used to group and 
interpret three-dimensional artifacts (code, scenarios, and model 
elements) as required in the footprint graph. 

The approaches of Haumer et al. [9], Jackson [10], and Cox-
Delugach [4] constitute a small sample of manual traceability 
techniques. Some of them infer traces based on keywords whereas 
others use a rich set of media (e.g., video, audio, etc.) to capture 
and maintain trace rationale. Their works only provide manual 
processes and do not automate trace generation and validation 
(except for capturing traces). As our example has shown, trace 
generation for even a small system can become very complex. 
Manual trace detection, though effective, can thus become very 
costly.  

Our approach observes the source code of a software system 
according to test scenarios executed on it. This activity is similar to 
slicing where the source code is observed (sliced) according to 
some property or rule. The main purposes of slicing are to 
understand code dependencies, support debugging, and to 
manipulate code to introduce or eliminate some property. Slicing 
thus divides source code and then re-composes it in a different 
manner to add or remove some desired or undesired properties; 
slicing is also used for better understanding. 

Our work also relates to the research on separation of concerns 
[13]. The aim of separation of concerns is to elicit modeling 
information or code that relates to individual concerns. For 
instance, a concern could be a non-functional requirement that has 
to be satisfied. By separating concerns, it becomes possible to 
manipulate them without affecting one another. Our approach is a 
natural complement to separation of concerns. We believe that it is 
possible to define scenarios based on concerns. By using our 
approach one can then find overlaps among those concerns. 

The xlinkit approach [12] is based on XML technologies and 
provides a mechanism for generating consistency links between 
XML-based documents. New links (=traces) are generated for 
every model element satisfying some given consistency rules. 
However, consistency rules may be difficult to define and 
expensive to evaluate. Our approach does not require them. 

8. CONCLUSION 
This paper presented an approach to trace analysis. As a pre-
requisite, it requires hypotheses on how model elements relate to 
source code. Test scenarios and an executable software system 
may be used to determine this automatically; however, developers 
may also define this input manually. Trace dependencies exist 
among model elements if their source code overlaps.  

This paper is based on an existing technique that requires at most n 
input dependencies (model element to source code) to generate up 
to n2 trace dependencies. The existing approach avoids the 
complex issues of syntactic and semantic differences among 

models. We demonstrated this on the state transition/class example 
where we never defined the semantics of the models. 

The drawback of the previous approach was in assuming that it 
would be easy for developers to identify input dependencies and 
shared code. We eased this burden by allowing developers to 
capture input with uncertainties. Particularly, we allowed the 
grouping of model elements and the expression of input 
confidence (e.g., isAtLeast, isAtMost). Furthermore, we 
augmented trace analysis with the ability to identify shared code 
and inconsistencies. Our extended approach is more flexible and 
more precise at the same time. The only condition for using our 
approach is the availability of an executable and observable 
software system (or prototypes)  

9. REFERENCES 
[1] Abi-Antoun, M., Ho, J., and Kwan, J. Inter-Library Loan Management 

System: Revised Life-Cycle Architecture.  Technical Report, 
University of Southern California, 1999.  

[2] Boehm, B.W., Abts, C., Brown, A. W., et al: Software Cost 
Estimation with COCOMO II. New Jersey, Prentice Hall, 2000. 

[3] Clarke, S., Harrison, W., Ossher, H., and Tarr, P.:  “Subject-Oriented 
Design: Towards Improved Alignment of Requirments, Design, and 
Code,” Proceedings of the 1999 ACM SIGPLAN Conferencer on 
Object-Oriented Programming, Systems, Languages, and 
Applications, Dallas, TX, October 1998, pp.325-339. 

[4] Cox, L., Delugach, H. S., and Skipper, D.:  “Dependency Analysis 
Using Conceptual Graphs,” Proceedings of the 9 th International 
Conference on Conceptual Structures, Palo Alto, CA, July 2001. 

[5] Dohyung, K.:  “Java MPEG Player,” 
http://peace.snu.ac.kr/dhkim/java/MPEG/, 1999. 

[6] Egyed A.:  A Scenario-Driven Approach to Trace Dependency 
Analysis. IEEE Transactions on Software Engineering (TSE) 29(2), 
2003, 116-132. 

[7] Egyed, A. and Gruenbacher, P.:  “Automating Requirements 
Traceability – Beyond the Record and Replay Paradigm,” 
Proceedings of the 17th International Conference on Automated 
Software Engineering (ASE), Edinburgh, Scottland, UK, September 
2002, pp.pp. 163-171. 

[8] Gotel, O. C. Z. and Finkelstein, A. C. W.:  “An Analysis of the 
Requirements Traceability Problem,” Proceedings of the First 
International Conf. on Requirements Engineering, 1994, pp.94-101. 

[9] Haumer, P., Pohl, K., Weidenhaupt, K., and Jarke, M.:  “Improving 
Reviews by Extending Traceability,” Proceedings of the 32nd Annual 
Hawaii International Conference on System Sciences (HICSS), 1999 

[10] Jackson, J.:  “A Keyphrase Based Traceability Scheme,” IEE 
Colloquium on Tools and Techniques for Maintaining Traceability 
During Design, 1991, pp.2-1-2/4. 

[11] Kiczales, G. , Lamping, J., Mendhekar, A., Maeda, C., Videira Lopes, 
C., Loingtier, J.-M., and Irwin, J.:  “Aspect-Oriented Programming,” 
European Conference on Object-Oriented Programming (ECOOP), 
June 1997, pp.220-242. 

[12] Nentwich C., Capra L., Emmerich W., and Finkelstein A.:  xlinkit: a 
consistency checking and smart link generation service.  ACM 
Transactions on Internet Technology (TOIT) 2(2), 2002, 151-185. 

[13] Parnas D. L.:  On the Criteria to be Used in Decomposing Systems 
into Modules. Comm. of the ACM 15(12), 1972, 1053-1058. 

[14] Pinheiro F. A. C. and Goguen J. A.:  An Object-Oriented Tool for 
Tracing Requirements. IEEE Software 13(2), 1996, 52-64. 

[15] Rumbaugh, J., Jacobson, I., Booch, G.: The Unified Modeling 
Language Reference Manual. Addison Wesley, 1999. 

[16] Snelting, G. and Tip, F.:  “Reengineering Class Hierachies Using 
Concept Analysis,” Proceedings of the ACM SIGSOFT Symp. on the 
Foundations of Software Engineering, November 1998, pp.99-110. 




